

Comparisons of GYRO and GS2 Including E×B Flow Shear

R. Bravenec Fourth State Research

> J. Candy General Atomics

M. Barnes, N. Howard

C. Holland University of California, San Diego

Background

- Most gyrokinetic microstability codes include passing and trapped electrons, accurate plasma shaping, multiple kinetic species, collisions, magnetic fluctuations, and equilibrium E×B flow shear.
- Linear mode frequencies are used routinely for interpreting turbulence measurements in experiments (TEM unstable?).
- Nonlinear predictions of transport and/or turbulence characteristics are used extensively to interpret and predict transport in experiments.
- ★ However, the codes have not been "verified" (shown to correctly solve the underlying equations) for present-day experiments spanning a range of discharge conditions.

Verification

- No analytical verification in such regimes \Rightarrow
 - "benchmarking": Code is "correct" if it agrees with others (unlikely all would produce exact same erroneous results).
- "Apples-to-apples" comparisons between codes:*
 - same plasma, including shaping (EFIT or Miller parameterization with elongation, triangularity and gradients, R/a, q, shear, etc.)
 - same physics (electromagnetic, collisions, trapped electrons, E×B shear, etc.)
 - periodic (flux-tube) radial domain (dictated by GS2), or $\rho^* = \rho_s/a \ll 1$.
 - sufficient temporal, spatial, velocity-space resolutions

* Eulerian (continuum, fixed grid) GYRO and GS2 in what follows. Plan to add Langrangian (moving grid) particle-in-cell (PIC) code GEM.

Validation NOT Shortcut to Verification

- Validation: Comparisons of fluxes, turbulence parameters between code and experiment.
- Codes rarely agree with experiment using default plasma profiles.
- Plasma profiles must be independently adjusted in all combinations within experimental uncertainties to seek agreement.

No way to distinguish code errors from experimental uncertainties

Outline

DIII-D shot 129813, t = 1.5 s C-Mod shot 1101014009, t = 1.0 s

- Linear
 - full physics

- Nonlinear
 - no E×B flow shear
 - » full physics
 - » collisionless*
 - with E×B flow shear
 - » full physics
 - » collisionless*

Linear

- full physics
- collisionless*
- collisionless, no impurity*
- Nonlinear
 - no E×B flow shear
 - » electrostatic

*treated because of code disagreements with full physics

Physics Features

- δB_{\perp} (δB_{\parallel} neglected)
- passing and trapped electrons
- Miller shaping parameters
- electron collisions (Lorentz model)
- one impurity (C^{6+} in DIII-D, B^{5+} in C-Mod)
- local (flux-tube) radial domain ($\rho^* = \rho_s / a \ll 1$)
- finite Debye length

 \star All the above referred to as "full physics."

DIII-D

DIII-D Parameters (ρ = 0.5)

DIII-D shot 128913: 1 NB, L-mode, 2.1 T, 1.0 MA

Parameter	Value
<i>r</i> (m)	0.33
<i>a</i> (m)	0.60
$n_e (10^{19} \mathrm{m}^{-3})$	2.1
T_e (keV)	1.0
n_i/n_e	0.94
n_{imp}/n_e	0.011
$T_i/T_e = T_{inp}/T_e$	0.83
$a/L_{ne} = a \operatorname{dln}(n_e)/\operatorname{d}r$	1.1
$a/L_{ni} = a \operatorname{dln}(n_i)/\operatorname{d} r$	1.1
$a/L_{Te} = a \operatorname{dln}(T_e)/\operatorname{d}r$	2.6
$a/L_{Ti} = a \operatorname{dln}(T_i)/\operatorname{d} r$	1.8
$a/L_{Timp} = a \operatorname{dln}(T_{imp})/\operatorname{d} r$	1.8

Parameter	Value
$R_0(r)/a$	2.8
$\Delta = \mathrm{d}R_0(r)/\mathrm{d}r$	-0.086
q	1.8
$s = r \operatorname{dln}(q)/\operatorname{d} r$	0.58
К	1.3
$s_{\kappa} = r \mathrm{dln}(\kappa)/\mathrm{d}r$	0.046
δ	0.15
$s_{\delta} = r \mathrm{d}\delta/\mathrm{d}r$	0.17
β	0.0035
$ ho^*$	0.0037
$Z_{\it eff}$	1.3
$\mathbf{v}_{ei} a/c_s$	0.11

 $c_s = (T_e/m_i)^{1/2}$

r = half-width of flux surface at elevation of centroid

Linear Results

 $k_r = 0$ for GS2 GYRO solves in real space

Linear Frequencies, Full Physics

Nonlinear Results No E×B Flow Shear

Nonlinear Simulations, no ExB

- 16 poloidal modes
- $0 < k_{\theta} \rho_s \leq 1$
- $L_{\theta} \sim 100 \rho_s$ (wavelength of lowest nonzero k_{θ})
- $L_r \sim 150 \rho_s$
 - *n_r* = 144 (GS2) $\Rightarrow \Delta r \sim \rho_s$
 - *n_r* = 192 (GYRO) $\Rightarrow \Delta r \sim 0.8 \rho_s$
- Velocity-space grid points: 128 (GYRO), 592 (GS2)

Comparisons between GS2, GYRO No E×B

Full Physics, no ExB

GS2 fluxes always larger (or more positive).

Collisionless, no ExB

Much better agreement

Electron Energy Flux Spectra, no ExB

- Peaks are in ITG range.
 - Shapes agree well.
- ◆ Peaks downshifted by factor ~2.
- GS2 slightly downshifted from GYRO.

Effects of Collisions No E×B

Collisional Effects, no ExB

Electron, ion fluxes greatly increase without collisions.

Absolute differences between fluxes about the same.

Collisional Effects, no ExB (cont.)

Electron, ion particle fluxes much larger without collisions.

 \star Absolute differences between particle fluxes *smaller* with collisions.

Nonlinear Results With E×B Flow Shear

 $\gamma_{\mathbf{E} \times \mathbf{B}} a/c_s = 0.064$ $\gamma_{\mathbf{E} \times \mathbf{B}} / \gamma_{\text{max}} \approx 0.3$ $\gamma_{\mathbf{E} \times \mathbf{B}} / \nu_{\text{ei}} \approx 0.6$

Nonlinear Simulations, with E×B

- 16 poloidal modes
- $0 < k_{\theta} \rho_s \leq 1$
- $L_{\theta} \sim 100 \rho_s$ (wavelength of lowest nonzero k_{θ})
- $L_r \sim 100 \rho_s$
 - *n_r* = 144 (GS2) \Rightarrow ∆*r* $\sim 0.7 ρ$ *s*
 - *n_r* = 192 (GYRO) $\Rightarrow \Delta r \sim 0.5 \rho_s$
- Velocity-space grid points: 240 (GYRO), 592 (GS2)

Comparisons between GS2, GYRO with ExB

Full Physics, with ExB

Factor ~ 2 disagreement in electrostatic fluxes
 Again, GS2 fluxes always larger (or more positive).

Collisionless, with ExB

◆ Factor ~ √2 disagreement in ES fluxes, GS2 larger
◆ Absolute differences about same as with full physics.

Electron Energy Flux Spectra, with ExB

Full Physics

Collisionless

- Peaks are in ITG range.
 GYRO slightly downshifted, smaller than GS2
- Peaks downshifted by same factor ~2 as without E×B.
- GYRO smaller than GS2

Effects of ExB Flow Shear

ExB Effects, Full Physics

♦ GYRO fluxes decrease ~ 40%.

ExB Effects, Full Physics (cont.)

GYRO particle fluxes decrease ~ 45%.

ExB Effects, Collisionless

GS2 fluxes decrease only slightly.

ExB Effects, Collisionless (cont.)

GYRO particle fluxes decrease ~ 30% with E×B.
 Except for EM energy, GS2 fluxes decrease ~ 25%.

DIII-D Summary

Without E×B

- Full physics: Frequencies agree but fluxes less so. (However, none exhibit large *absolute* differences between codes.)
- Collisionless: GYRO and GS2 fluxes (and frequencies) agree.
- ♦ With E×B
 - GS2 and GYRO fluxes disagree by factor ~ √2 (collisionless) to 2 (full physics). GYRO fluxes are reduced by flow shear more than those from GS2.

		nonlinear	
	linear	no ExB	ExB
collisional	\checkmark	x	×
collisionless	\checkmark	\checkmark	x

Especially bad: Actual dis-- charges have collisions and rotational shear.

★ In essentially all cases, GS2 fluxes greater (or more positive) than GYRO fluxes (or vice-versa).

C-Mod First Results

C-Mod vs DIII-D Parameters (ρ = 0.5)

th-State RESEARCH

- DIII-D shot 128913: 1 neutral beam, L-mode, 2.1 T, 1.0 MA
- C-Mod shot 1101014009: 1 MW ICRH, L-mode, 5.3 T, 1.2 MA

Parameter	DIII-D	C-Mod	Parameter	DIII-D	C-Mod
<i>r</i> (m)	0.33	0.12	$R_0(r)/a$	2.8	3.1
<i>a</i> (m)	0.60	0.22	$\Delta = \mathrm{d}R_0(r)/\mathrm{d}r$	-0.086	-0.034
$n_e (10^{19} \text{ m}^{-3})$	2.1	14.6	q	1.8	1.2
T_e (keV)	1.0	1.6	$s = r \operatorname{dln}(q)/\operatorname{d} r$	0.58	0.86
n_i/n_e	0.94	0.87	К	1.3	1.3
n_{imp}/n_e	0.011	0.026	$s_{\kappa} = r \operatorname{dln}(\kappa)/\mathrm{d}r$	0.046	0.068
$T_i/T_e = T_{inp}/T_e$	0.83	0.71	δ	0.15	0.15
$a/L_{ne} = a \operatorname{dln}(n_e)/\operatorname{d}r$	1.1	0.36	$s_{\delta} = r \mathrm{d}\delta/\mathrm{d}r$	0.17	0.17
$a/L_{ni} = a \operatorname{dln}(n_i)/\operatorname{d} r$	1.1	0.36	β	0.0035	0.0058
$a/L_{Te} = a \operatorname{dln}(T_e)/\operatorname{d}r$	2.6	2.4	ρ*	0.0037	0.0052
$a/L_{Ti} = a \mathrm{dln}(T_i)/\mathrm{d}r$	1.8	1.9	$Z_{e\!f\!f}$	1.3	2.3
$a/L_{Timp} = a \operatorname{dln}(T_{imp})/\operatorname{d}r$	1.8	1.9	$v_{ei} a/c_s$	0.11	0.10

r = half-width of flux surface at the elevation of the centroid

Linear

Linear Frequencies: Full Physics

Similar to DIII-D collisionless result

C-Mod Summary - Linear

- Full physics:
 - Tearing mode at lowest $k_{\theta}\rho_s$ from GS2, electrostatic mode from GYRO.
 - Frequencies agree except growth rates next to *stable* TEM region.
- Without collisions:
 - Frequencies agree except in *unstable* TEM region where GYRO growth rates are lower than those from GS2.
- Without either collisions or impurity:
 - Frequencies agree except at highest $k_{\theta}\rho_s$.
- Without impurity alone (not shown):
 - virtually same as full physics.

	collisions	no collisions
impurity	×	×
no impurity	×	\checkmark

- Electrostatic (not shown):
 - virtually same as full physics, except GS2 tearing mode \rightarrow ITG.

Nonlinear Results Electrostatic, no E×B Flow Shear

 $\gamma_{\mathbf{E} \times \mathbf{B}} a/c_s = 0.0015$ $\gamma_{\mathbf{E} \times \mathbf{B}} / \gamma_{\text{max}} < 0.02 << 1$

Electrostatic, no ExB

Good agreement (?) except for (inward) particle fluxes.
 However, they and impurity energy fluxes small.

Electron Energy Flux Spectra, no ExB

Peaks about the same but broader than DIII-D

C-Mod Summary - Nonlinear

• Without **E**×**B**

- Good agreement between GS2, GYRO except for (inward) particle fluxes. However, normalized C-Mod particle fluxes very small.
- Slow oscillations in time: require longer runs for definitive conclusions.
- C-Mod absolute flux densities much greater than those of DIII-D.

Future Work

DIII-D discharge

- Understand and resolve (?) code differences with $\mathbf{E} \times \mathbf{B}$.

- C-Mod discharge
 - Understand and resolve (?) differences in linear results. Investigate effects of density and *q* profile, impurity concentration.
 - Run nonlinear simulations longer.
 - Perform simulations with and without collisions, impurity, E×B.
- Discharges which community already desires simulations of.
- Learn to run GEM and add to benchmarking/verification.
 - Three codes would greatly enhance credibility of verification exercises, especially when additional code is PIC.
 - Perform simulations for discharges presented here.
 - Understand and resolve (?) differences, if any, with GYRO and/or GS2.
- Investigate other radii, e.g., closer to edge.

In all cases, check simulation convergence w.r.t. radial resolution & box size, # poloidal modes, time step.

Future Work (cont.)

Longer term (next calendar year):

- Investigate other discharges:
 - ITER scenario (need license to access data)
 - DIII-D high rotation, β , etc.
 - C-Mod I-mode, ITB, etc.
- Develop quantitative metric for agreement between codes.
- Compare fundamental fluctuation characteristics among codes, e.g.,
 - magnitudes of fluctuations in density, temperature, etc.,
 - cross phase between density and temperature fluctuations.